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Modulation of the growth rate of short capillary-gravity surface wind waves in the 
presence of a long wave with steepness much smaller than the maximum is studied 
theoretically. The Miles (1962) mechanism taking into account the viscous wave 
stresses in the air flow is considered to be the main process of short-wave generation. 
The short-wave growth rate is defined by the wind velocity gradient in the viscous 
sublayer of the logarithmic boundary layer. The long wave propagating on the wave 
surface induces an additional component of the wind velocity gradient oscillating with 
the length and time periods of the long wave, which results in modulation, with the 
same period, of the growth rate of the short wave riding on the long one. The growth- 
rate modulation amplitude depends on the parameter M being of the order of the 
relation between the oscillating and the mean wind velocity gradients in the viscous 
sublayer 

(where c, k, a are the phase velocity, the wavenumber and the elevation amplitude of 
the long wave; v, is the viscosity coefficient in the air; u* is the wind friction velocity). 
When M = O( 1) (weak winds and long waves) the oscillating component of the short- 
wave growth rate is of the same order as the mean one. If M is much smaller than unity, 
then the relative amplitude of the growth rate is of the same order as the steepness of 
the long wave. 

1. Introduction 
Short waves of the centimetre bandwidth are known to form backscatter from the 

sea surface arising from Bragg scattering. So, when the theory of the imaging of long 
surface waves by radar is constructed, the problem of determining the variations of the 
short-surface-wave spectrum arises. Very large differences in the scales of short and 
long waves are typical for this problem: the respective wavelengths are 1-10 cm and 
10-103 m; the time periods are 0.04-0.25 s and 2.5-25 s; the phase velocities are 25- 
40 cm s-l and 4-40 m s-l. Also, the steepness of long surface waves of lO-1000 m 
bandwidth is much smaller than the maximal value (0.142~) for typical ocean 
conditions. 

Two mechanisms of interaction which result in modulation of short waves with the 
period of a long wave have already been considered. First, higher harmonics are 
generated near the crest of a steep gravity wave (Longuet-Higgins 1963 and Ruvinsky, 
Feldstein & Friedman 1991). But this mechanism proved to be effective only when the 
long wave is the almost-highest one. And the greater the wavelength of the long wave, 
the closer its steepness should be to the maximum value for the short waves to be 
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generated effectively. Thus this mechanism is not necessarily applicable for long ocean 
waves with small steepness. 

Another well-known mechanism is the transformation of a short wave on the 
variable flow of a long wave (Longuet-Higgins & Stewart 1960,1961 ; Longuet-Higgins 
1987; Phillips 1981 ; Shyu & Phillips 1990). But since there is no resonance between the 
phase velocity of the long wave and the group velocity of the short wave in the case 
under consideration, this mechanism provides small values of modulation of the short- 
wave amplitude (of the order of the long-wave steepness). 

Another mechanism leading to the modulation of the short-wind-waves field was 
considered in the paper by Valenzuela & Wright (1979), where the modulation of the 
growth rate of short wind waves by the long waves was taken into account. In that 
paper this mechanism was considered only phenomenologically. Preliminary cal- 
culations of the modulation of the short wave by the long wave were done by Landahl, 
Widnall & Hultgren (1978), where the modified Orr-Sommerfeld equation for short- 
scale disturbances in the air obtained by the two-scale method was solved. But the 
calculations were carried out only for a limited set of parameters of the wind and 
waves, namely for a wind friction velocity u* = 30 cm s-l, wavelengths of the long 
waves of 100, 75, 36, 20 and 16.5 cm and wavelengths of the short waves of 2, 1, 0.75 
and 0.6cm. These calculations were for waves in laboratory channels. The main 
purpose of the present work is to calculate in detail the growth rate of short waves in 
the presence of long waves under conditions more typical for oceans. 

The qualitative mechanism of modulation of the short-wave growth rate is discussed 
below. The Miles mechanism taking into account the viscous stress (Miles 1962) is 
considered as the main process of generation of the centimetre waves. In this case the 
value of the wave growth rate /3 is determined by two independent parameters, namely 
the gradient of the wind velocity U,, in the viscous sublayer and the wavenumber K of 
the short wave. It is well known that (Phillips 1977) 

where u* denotes the wind friction velocity, and u, denotes the viscosity coefficient of 
the air, i.e. 

Consider a long surface wave with wavenumber k, phase velocity c and elevation 
amplitude a propagating in water. Then variable flow arises on the water surface. In 
the reference frame moving with the long-wave phase velocity, the horizontal flow at 
the surface is, to first order in the steepness (ka), 

u = cka cos kx - c. (1.1) 

And in the reference frame under consideration the phase velocity E, of the short wave 
is 

Here c, is the local intrinsic phase velocity of the short waves. It was shown by 
Longuet-Higgins & Stewart (1960, 1961) that the wavenumber K ,  the phase velocity c, 
and the elevation amplitude of the short gravity wave appeared to be modulated: 

P = P(.",~,, 4. 

2, = -c++,+ckacoskx. (1.2) 

K = do'( 1 + kacos kx), 
c, = cp)( 1 - ka cos kx), 
n = do)( 1 + ka cos kx). 

If there is a long wave on the water surface, it induces a disturbance in the air, which 
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has the same length and time periods as the wave in the water, so modulation of the 
short-wave growth rate arises. This disturbance is considered next to demonstrate why 
the growth rate of the short waves can be strongly modulated. 

If there were no viscosity in the air or in the water, then the disturbances of the 
vertical velocity would be continuous at the air-water boundary, but the disturbances 
of the horizontal velocity would have a discontinuity of order akc. But if the viscosity 
of the air and water are taken into account, then the no-slip condition is valid on their 
boundary, i.e. the horizontal velocity is continuous as well. In this case a wave 
boundary layer with thickness 8, 6 l / k  appears in the air, i.e. flow with a large 
oscillating gradient of the air flow velocity (of order cka/&) arises near the water 
surface. It should be emphasized that the oscillating part of the wind velocity gradient 
determines the oscillating part of the growth rate of the short waves. Indeed, the air 
velocity profile in the reference frame moving with the long-wave phase velocity is 

f (z/S,) is the velocity profile in the long-wave boundary layer, and according to the no- 
slip conditions f (z=o = 0. The air flow velocity on the air-water boundary is defined by 
(1.1). But the wave-flow interaction is known to be determined by their relative 
velocity. More exactly, the difference u - t, in the Orr-Sommerfeld equation determines 
the dispersion properties of the short waves: 

(1.5) 
Comparing (1.4) and (1.2) shows that the oscillating part of the phase velocity of the 
short waves (ckacos kx) is exactly equal to the oscillating air flow velocity on the water 
surface (due to the no-slip condition). As a result there is no oscillating term 
(ckacoskx) in (1.5). If the scale of the waves is small enough that the region of intensive 
wave-flow interaction is in the viscous sublayer, then their growth rate is determined 
by the gradient of u - t, : 

u = Uo(z) - c + cka [cos kx + f (z/8,) cos (kx - #)I. (1 -4) 

u - t, = - c, + U,,(z) + cka f (z/6,) cos (kx  - q5). 

and it follows from (1.6) that strong modulation of the air flow velocity gradient (and 
strong modulation of the short surface waves depending on it) should be expected for 
weak winds and large wavelengths of long waves. 

The growth rate is calculated in the same way as in Miles (1962). Namely, taking into 
account that the ratios of the densities (pa/p, - and the dynamical viscosity 
coefficients ( p a  va/p, vw - lop2) of the water and the air are small enables the problem 
to be solved in the following way. First the hydrodynamical problem of surface-wave 
generation by normal and tangential air stresses forcing the water surface is solved. 
Then the aerodynamical problem of the air flow disturbance induced by the surface 
waves is considered. The normal and tangential stresses forcing the water surface are 
calculated. Thus the closed dispersion relation for the waves in the air-water flow is 
obtained. When the modulation of the growth rate of short waves by a long wave is 
considered, each of the two problems becomes split into two further ones: for a long 
wave and for a short wave on a long wave. Thus four problems arise: first, a long 
surface wave in water; second, a short wave in water on a long wave; third, a long-wave 
disturbance in air; and, fourth, a short wave on a long wave in the air. 

The main difficulty of this task is caused by the thickness of the viscous sublayer in 
the air, 6, being much smaller than the elevation amplitude of long surface waves in 
typical ocean conditions, i.e. the wave disturbance in the air being strongly nonlinear. 
Fortunately it is simplified by the fact that the flow around a small-steepness wave is 
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without separation. And it is pointed out in the work by Benjamin (1959), referring to 
Schlichting (1955), that the distortion of the velocity profile near the wavy surface is 
formed by bending of the streamlines of the undisturbed air flow to the first order in 
the surface curvature. If the problem is formulated in curvilinear two-dimensional 
coordinates with the wavy water surface being a coordinate line, the disturbances 
appear to be displacements from the bent streamlines of no more than the first order 
in ka (Benjamin 1959). The curvilinear coordinates proposed in Benjamin (1959), in 
which the water surface resulting from the long harmonic wave is a coordinate line to 
the first order of approximation in (ka), are used below for solution of the problem. 

A point concerning the order of expansion (ka) being taken into account should be 
made here. There are several small parameters in the problem under consideration, 
namely ka, c, /c ,  k/K, and uo/c, where u, denotes the wind drift flow velocity. They are 
independent, but of the same order. And since the dependence of c, on ka (i.e. the 
quantity of order c, ka) is taken into account, then the quantities of order ~ ( k a ) ~  (which 
are the same order as c, ka) should be taken into account as well. However, they cause 
additional terms in the phase velocity much smaller than O(c(ka)2), which can be 
omitted (see the Appendix). 

The structure of the paper is the following. In $2 the formulation of the problem in 
curvilinear coordinates is presented. In $9 3-6 the hydrodynamical and aerodynamical 
problems for the long and the short waves are considered. In $7 the results of the 
numerical calculations of the modulation of the growth rate of the short waves on the 
long waves are presented and discussed. In $8 the influence of the modulation of the 
growth rate on the modulation of the spectral component of short wind waves with a 
long wave is discussed. 

2. Formulation of the problem; curvilinear coordinates 
Consider plane air shear flow over the water surface. Let two wave disturbances 

propagate in this two-layered system: a long wave with wavenumber k and elevation 
amplitude a and a short wave with wavenumber k, and elevation amplitude a, with 
k 4 k, and a, + a. The steepness of both the long and the short waves is considered to 
be small, so that the values ( k ~ ) ~  and ( k , ~ , ) ~  can be omitted. Air flow over the water 
surface without separation is considered. 

To consider large gradients of velocity in the viscous sublayer at the air-water 
interface one should use curvilinear coordinates in which the water surface bent by the 
long wave is a coordinate line at the first order of approximation in ka. Since the wave 
field should decrease with the distance from the boundary, different curvilinear 
coordinates are used in the water and in the air. Namely, in the water 

7 , (2.1) 
and in the air, according to Benjamin (1959) 

, (2.2) 
The real parts of the right-hand sides of (2.1) and (2.2) are to be taken. This also applies 
to the complex expressions of this kind given below. It follows from (2.1) and (2.2) that 
surfaces 7 = 0 and y = 0 coincide with the water surface disturbed by the long wave 
at the first order of approximation in ka. The Jacobians of transformations in the air 
and in the water at the first order of approximation in ka are respectively the following: 

(2.3) 
(2.4) 

= + ia ek(v+iz) = -a ek(g+iz) 

5 = - ia e-k(y-izc) = - a e-Wg-is) 

J" = 1 -2kaek(?'+'s), 
J" = 1 + 2ka e-k(V-iC). 
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All the expressions below are presented in the curvilinear coordinates in the air (2.2). 
The expressions for the fields in the water are the same. The indices (w)  and (a)  for 
values in air and in water respectively will be given only if necessary. 

The expression for the velocity u using the stream function $ in the curvilinear 
coordinates will be required below. It is 

And the two-dimensional hydrodynamics equations in curvilinear coordinates are 

a I a 
a7 P 
- ($J +~JS(~~+1CC~)+J($C1/$'k-$StC1/g)+-P5+8Y5 = v&[J($g+$C1/2/)lr ( 2 . 6 4  

denoting the density p and the molecular viscosity v. Eliminating p from (2.6a, b) gives 
the hydrodynamical system in terms of vorticity and stream function, which has the 
following form in the curvilinear coordinates : 

( 2 . 7 ~ )  

(2.7b) 

Here c" is the vorticity of the flow. 
The system (2.7) appears to be more convenient for numerical calculations than 

(2.6), and it is used below to consider wave disturbances in the air where the numerical 
method can be employed. 

The systems (2.6) and (2.7) should be completed by the kinematical and dynamical 
boundary conditions on the air-water surface, which must be written at the air-water 
boundary surface disturbed by both the long wave and the short wave: 

I 

Gt + J($& - $c EV) = VJ(Et5 + E7J, 

E = J($g + 9 t J .  

Here 

N and ns denoting the elevations of the long and short waves respectively. 

velocity at the water-air boundary. Taking into account (2.5) yields 

H = Nx(t7 711 + nS(x(L  717 t )  - Y K  71, (2.9) 

The no-slip condition is equivalent to the continuity of the tth component of the 

(2.10) 

The dynamical boundary conditions are the continuity of the normal and tangential 
stresses on the water-air boundary surface. They are 

p a  +pa v, (7;lg=n = p" +pw v, (7: +- 2 TPly=n 
Pa va V:lg=n = p w  vw c:Wly=n. 

Here Tp,/R is the surface tension force : R denotes the radius of curvature of the wavy 
surface; pa,  pw are the pressures in the air and in the water following from system (2.6); 
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a;, a;, a:, a: are the viscous normal and tangential stresses in the water and in the air 
respectively. They are expressed as follows : 

a r  = c<t: - (%k/?/ - &) + 4&?) 5% 5, - 2& rx, + $k/ 5SJ. (2.12) 

We will now consider the four problems outlined in the Introduction. 

3. A long wave in water 

In this case the stream function of the flow disturbed by the long wave is 
Suppose that a wind drift current with velocity profile u,(y) is present in the water. 

Consideration of the long-wave disturbance in the water follows the paper by Miles 
(1962), but the wind drift flow in the water is taken into account here, and the 
analytical expressions for the dispersion relation and the stream function are obtained 
for the typical situation of the drift flow velocity u,, being small in comparison with the 
phase velocity of the long wave c.  It differs from the paper by Valenzuela (1976) where 
the influence of the drift flow was considered exactly in the numerical model. 

The disturbance of the stream function is presented the following way (as in 
Benjamin 1959) : 

$' = [$'(y) + (v, - c) e"~] eiks. (3.2) 

Long waves with wavelengths of the order 10m or more will be considered. 
Neglecting the effect of molecular viscosity on the long waves enables the Rayleigh 
equation for # to be obtained from the system (2.6) at the first order of approximation 
in ka: 

(0, - c) (&, - k2@)  - uoYy 4' = 0. 

$'(y = O)+u,(O)-c = 0. 

(3.3) 

(3.4) 

It follows from the kinematical boundary condition (2.8) that to the first order in ka 

The normal and tangential air stresses are known to be small for these long waves (see 
Phillips 1977). Taking this into account and omitting the surface tension for the long 
wave yields the dynamical boundary condition 

- g + ~ ' v o , - ( u o - c ) ~ ;  = 0. (3.5) 

The phase velocities c of the waves are of order 10 m s-l. Winds weaker than that, 
for which waves of the bandwidth considered are the peak ones, are considered below, 
which means that the wind velocity is less than 10 m s-l and the drift flow velocity is 
less than 10(p,/p,,)1/2 m s-I, or less than 0.3 m s-l. Thus uo 4 c. 

Solving equation (3.3) with the boundary conditions (3.4) and (3.5) yields the 
dispersion relation for the surface water waves. Taking into account that uo/c  is small 
the solution of (3.3) and the dispersion relation should be sought as a series in uo/c.  At 
the first order of approximation in (uo/c)  the dispersion relation is 
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If the scale of the function u,(y) is much smaller than the wavelength of the disturbance 
l/k, then the expression for the disturbance of the stream function a+' is 

a$." = 2ka eky r v , ( y )  dy. 
0 

(3.7) 

It follows from (3.7) that in the curvilinear coordinates considered here the long- 
wave disturbances of the stream function are of order au, << ac (ac is the order of the 
stream function disturbance in Cartesian coordinates). The disturbances of the stream 
function being small means that the streamlines are close to the coordinate lines in the 
curvilinear coordinates, and the coordinate lines of the transformation (2.1) coincide 
with the streamlines of the surface wave on deep water moving with velocity -c. 

Although the disturbances of the stream function are small, the velocity disturbances 
are essential. Indeed, the expression for the horizontal velocity is 

w 112 all." 
Uhor = ( J  - = u,(y) - c + ka eiks(c + u,(y)), as 

where (2.5) is taken into consideration and values of order kL are omitted. 

4. A short-wave disturbance on a long wave in water 
In this section the dispersion relation for short waves modulated by a long wave is 

obtained. The procedure for obtaining of the dispersion relation is similar to that used 
in Miles (1962). Some peculiarities of the two scales should be taken into account. 

In the presence of the short-wave and the long-wave disturbances the stream 
function is 

(4.1) 

4' being the short-wave disturbance of the stream function. Dimensionless variables 
are introduced : 

where L is the scale of the velocity profile in the viscous sublayer in the air and c is the 
phase velocity of the long wave. The characteristic scale of the short wave l/k, is 
generally of order L (more exactly L is less than 1 / k , )  and ,u = kL  is a small parameter 
of order of or less than k / k ,  4 1. 

The problem of short-long wave interaction can be treated by the two-scale method 
considering ' fast' (7, v, 8) and ' slow ' scales 

$" = / (uo - c)  dy + 2ka eiks eky u,(y) dy + p, 1 
g = s /L;  e = y / L ;  = tc/L,  

T = p ;  . Z = , ~ U ;  Q=p6). 

In this case an expression for should be sought in the following form: 

i.4;- p = 4(8, Q, C, T )  e-ifir+i@(g, '2, x, 2') + 

Here @ is the eikonal. By definition the dimensionless horizontal wavenumber of the 
short wave K = k, L is the horizontal component of the eikonal @ gradient. And in the 
curvilinear coordinates (2.1) 

where J" is defined in (2.3). 
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non-viscous terms : 
q5 = A y(e, Q, C, 0 + W 8 ,  Q, C, TI. 

At zeroth order in ,u the non-viscous term $ appears to be a function of 8 depending 
parametrically on C and obeying the Rayleigh equation 

(4.2) 

Suppose (similar to Miles 1962) that q5 can be presented as the sum of the viscous and 

[(l +a) ( ~ ~ ( 0 )  - v O ( O ) )  -c,] (Yes- K ~ (  1 + 201) Y )  - u o ~ ~  (1 + aY) = 0. 

Here (4.3) 

a = kaeiz. 

Taking (3.8) into consideration easily shows that c, is the local intrinsic phase velocity 
of the short waves. It should be mentioned that the difference c, - uhor (or the relative 
velocity of the water and the phase velocity of the short waves) occurs in equation (4.2). 

The viscous term is 

c, can be determined as a solution of the dispersion equation for the short waves on 
the long wave. It is 

Here 

and D, 6 denote the terms which describe dissipation of the short waves by viscosity 
and generation by wind respectively : 

Here G is determined by the normal (9') and tangential (F)  stresses induced by the 
short wave in the air flow. To find them the problem of disturbances in the air flow over 
the water surface should be solved. 

5. A long-wave disturbance in the air flow 
The system of hydrodynamical equations for a long-wave disturbance in the air flow 

in curvilinear coordinates (2.2) in terms of stream function and vorticity follows from 
the system (2.7a, b). Taking into consideration the expressions for c, q and the 
Jacobian J" to the first order of approximation in ka gives 

$h7 q - $ht z7 = V(Ett + q,:", (5.1 a)  

Y -  Z - (1 + 2ka e-k(Ti6) 1 ($h& + @c.,,). (5.1b) 
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$ can be expressed as a sum of two terms, one of which depends on 5 and the other 
does not: 

i=s"( u 0 7 1  ( 1 - c> d71+ $l(L 71, (5 .2~)  

(5.2b) 

The kinematical boundary condition which is the consequence of (2.8) at the first order 
in ka is 

0 

m 
Y -  - - UO,(T) + ..",(5,7). 

$1&=0 = 0. (5.3) 

At the first order in ka the no-slip condition (2.10) can be written the following way: 

(1 + ka eik6) = (1 - ka e'") $yWI,Io. 
Taking into consideration that $w is defined by (3.1), (3.7) and that 

VO(0) = U,(O) 

yields the boundary condition for $l 

$l,l,=o = 2ckaeikt, (5.4) 

and 

Long-short wave interaction is considered below. This interaction takes place mainly 
in the viscous sublayer. It follows from (5.5) that velocity disturbance is much smaller 
than the mean velocity (of order ka).  One can also see that this relation remains valid 
on the scale of the short wave. But the disturbance of the velocity gradient (the 
vorticity) may be of the same order as the vorticity of the mean flow. This case will be 
called the nonlinear regime. But in this case the vorticity disturbances prove to obey 
the linearized form of the hydrodynamical equations, since their horizontal scale is 
much larger than the vertical one. 

Consider here some estimates. First, the condition of the values of the vorticity of 
the wave field r, being of the same order as the mean values of the vorticity To is 
formulated below. rw is obviously of order akc/6,, where 6, is the scale of the long- 
wave viscous sublayer, and To = u i / v ,  (Phillips 1977). The condition r, = ro defines 
the boundary between the linear and nonlinear regimes. One can easily estimate the 
scale of the wave field 6, for the nonlinear regime. In this case the variation of the mean 
wind velocity on the scale of the wave field is of order T,S ,  N r,S, N kac, which is 
much smaller than c. In this case the scale of the wave field close to the water-air 
boundary is of the order of the scale of the oscillating boundary layer (see, for example, 
Lighthill 1978), namely 

Taking that into consideration yields the following expression for the boundary 
between the linear and nonlinear regions : 

$.,I,=, = - c + u,(O) + 2cka eik6. (5.5) 

6, = (V,/kC)'/'. (5.6) 

u",v, = (kc/v,)'/'akc. (5.7) 

It should be mentioned that the nonlinear regime of the long-wave disturbance in the 
air corresponds to the swell, i.e. to a wave with phase velocity much greater than the 
velocity of the peak wind waves equal to 201.4,. Indeed, it follows from (5.7), that 

20u,/c = 20(kak~Y,)~'~ 6 1. 

Expressions for the wave fields of the velocity and normal and tangential stresses for 
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the nonlinear regime can be easily obtained. In this case the following estimates for the 
stream function and its derivatives are valid. They follow from expression (5.2) for $ 
and the boundary conditions (5.3) and (5.5): 

@ - O ( d )  + O(cka8,) eikf, 

qkc., - O(c + uo) + O(cka) eikf, 

$[ - O(ckak8,) eikf, 

@6c., - O(ck2a) eik5, 

@[[ - O(ckak2Sw) eikE, - a - $77 - O(u0/8) + O(cka/S,) eikf, 

and so on. Here 8, is defined by (5.6) and 

S =  lOv,/u* (5.8) 

is the scale of the viscous sublayer. 
Taking this estimate into consideration and omitting small terms of order k8, k8,, 

and (ka)2 gives the following system from (5.1 a, b) : 

(5.9a, b) - calf = v, blr17, bl = 

The solution of system (5.9) obeying the boundary conditions (5.3), (5.5) and limited 
at infinite distance from the air-water boundary is 

- - - 

2cka 
r 

.Sl = 2ckar e-rT, @1 = - (1 - ecT9), (5.10a, b) 

where r = e-3ni/4/8w, and S, is defined in (5.6). 
Now consider the linear regime of a wave in air, when the vorticity disturbances are 

much smaller than the mean value, i.e. To + r,. In this case the linear approximation 
is valid and @l obeys the following linear equation: 

(5.11a) 

El = - k2$,,) + 2kau,, e-". (5.1 1 b) 

It should be mentioned that system (5.1 1 a, b) transforms into (5.9a, b) when c + u0 
and the characteristic vertical scale of the wave disturbance is much smaller than l/k. 
Also the set of wind and long-wave parameters considered by Landahl et al. (1978) (see 
the Introduction) correspond to the linear regime of the long-wave disturbance. 

To conclude this section the expression for the gradient of the air flow velocity rnear  
the water surface is discussed. It follows from (5.2) that 

I' = (1 + ka eikf) uO7(q) + $17c., e'". 

The oscillating component of the wind velocity is the sum of two terms. The 
curvature of the water surface is responsible for the first term, and the second term, 
proportionat to $3c.,T, arises due to the oscillations of the water surface. The first term 
is of the first order in ka, relating to the mean gradient, and its phase coincides with 
the phase of the long wave. It obviously follows from (5.10b), (5.6) and (5.7) that the 
second term is of the same order as the mean gradient uo7 for the nonlinear regime. And 
it is of first order in ka for the linear regime. For the nonlinear regime the phase of the 
oscillating part of the wind velocity gradient is determined by the phase of @17c.,. 
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Differentiating (5.106) easily gives that the phase of r should be close to (- 3x14). For 
the linear regime the phase of the oscillating part of the gradient is determined by both 
of its components. 

The expression for r can be easily obtained for the case kau,, - $1, El, but uo 4 c. 
Then the linear system (5.1 l a ,  b) is valid. It then follows from (5.11b), that 

$177 = El - 2ka eikt u o l l ( ~ ) .  

Seeking the solution to (5.1 1 )  as a series in (u,/c) gives that El is determined by (5.10a). 
Then 

r = ( 1  - ka e'") u0,(7) + 2ckar ecr, e'". 

The phase of the oscillating part of the velocity gradient r obviously tends to - 7[: with 
growth of the wind velocity. 

6. A short-wave disturbance on a long wave in air 

(5.2a, b) and the short-wave disturbances I,P and 3"': 
The stream function and the vorticity for this case can be expressed as a sum of 

$=J( u 0 %  ( 1 - c) dT1 + $l(T) eik6+ I,P(&-,T), (6.1 a) 

E = uOll(7) + El(y) ei"t+ E'([, 7). (6.1 b)  

Here ?,kl7 El are the solutions to (5.9) or (5.1 1 )  and I,P((, 7) P([, 7) are functions with 
characteristic horizontal scale of ( much less than l / k .  

0 

The problem will be formulated in dimensionless coordinates like (4.1) : 

6 = ( I L ;  h = y /L ;  7 = tc/L, 

where L is the vertical scale of the wind velocity defined by (5.8); p = kL is the small 
parameter. 

Considering the short-wave disturbance in the air we make use of the two-scales 
method as in 94, i.e. the short-wave disturbances of the stream function I,P, the 
vorticity Es, the pressure ps  and the short-wave elevation ns should be sought in the 
following form : 

9" = 1c.i (7, c, h, T, z, 0) +p& 

PS = Pi(., Q h, T, 

E' = Ei  (7, Q h, T, Z ,  0) +psi ,  
+PPL 

ns = ni (7, C, T, 2)  + p i ,  
denoting 0 = ph, Z = pc. (It should be mentioned here that the difference between Z 
and C = pus is of order (ka)2.) 

At the zeroth order in p and at the first order in ka the following system of equations 
for the lowest terms of the short-wave disturbances ($i,Zi) can be obtained from 
(2.7 a, b) : 

azs 
-+(l +2kaeefiz 
a7 

V 
= " ( 1  +2kae8+iz)(Egc+Eih), (6.2a) 

L2Es = ( 1  + 2 k ~ e @ + ' ~ ) ( $ & + $ i , ) .  (6.2b) 

LC 
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The equation for the short-wave disturbances, which follows from (2.6a), will be 
necessary for calculating the normal stress on the water surface. It is 

- a ($:) + (1 + 2ka e@+") [ (T 'O-' + =) $ l h  $is- (?+%) $;] 
ah 

LPS a +-L = ~-((l+2kcae@fiz)($;c+$~h)).  (6 .2~)  
c pa Lc ah 

It follows from ( 6 . 2 ~ ~  b) that at the zeroth order in p the solution can be sought in the 
following form :t p = X(h, Z )  e-iaT+i'W. 2 )  

Y 3 = T(h, Z )  e-ioT+i@'(c, z ) .  
7 

Here @(C,Z) is the eikonal of the short waves. In air the eikonal and the horizontal 
wavenumber K are connected in the following way: 

Taking (6.3) into account gives a system of equations for the complex amplitudes of 
the short-wave disturbances of the stream function X(h, Z )  and vorticity E(h, Z ) :  

(U(h, Z )  - c,) E- Xh(h, 2) x = 5 (1 + 201) [Ehh - K ~ (  1 - 2a) El, 

8 = (1 + 2a) [Xhh - K2( 1 - 2a) 21, 

(6.4a) 

(6.4b) 

1K 

where 

and 

U(h,Z)  == (uo(h)-uo(0))(l +a)+ --2kac eiZ, (7 ) 

c, = C(;-(l +a)($- 1.2.)). 

(6.5 a) 

(6.5b) 
(6.5 c) 

(6.5d) 

It should be mentioned that the expression for c, completely coincides with (4.3) 
obtained for short waves in water. Its value is determined as a solution of the dispersion 
equation (4.5). U(h ,Z)  is the wind flow velocity profile disturbed by the long wave. 
And since the no-slip condition (5.5) is valid for the long-wave disturbance $1, 

U(h = 0,Z)  = 0, i.e. in (6 .4~)  there is no oscillating part of the short-wave phase 
velocity, arising due to the Doppler shift in the oscillating velocity field of the long 
wave, since the disturbance of the air flow velocity is exactly equal to the velocity on 
the water surface due to no-slip conditions on the air-water boundary. The oscillating 
part is subtracted from the expression for the relative velocity in (6.4a), as already 
mentioned in the Introduction (see (1 3). 

The first boundary condition for the short waves follows from the general 
kinematical boundary condition (2.8). Substituting expression (2.9) for H(<, q, t )  and 
expression (6.1 a)  for $ into (2.8) yields the following kinematical boundary condition 
for the short-wave disturbance ns at the zeroth order in p and at the first order in ka: 

t More strictly the solution to (6.2a, b) should be sought as @ = ~ ( h ,  Z ,  0) e-in7+i*c~. but at 
zeroth order in p the dependence on 0 can be omitted. 
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According to the two-scale method the expression for 12, should be sought in the 
following form : 

Taking into account the boundary condition (5.4) for $lh,  the relation (6.3) between 
the eikonal CD and the wavenumber K ,  and the expression for c, gives the following form 
for the short-wave kinematical boundary condition : 

ns = n(z) e-iQT+i@(C. 2 )  

c, n = (6.6) 

A similar procedure for the kinematical boundary condition for the wave disturbances 
in the water gives 

where $(@, Q, 2, T )  is the short-wave stream function disturbance in the water. Finally 
the first boundary condition is 

Equation (6.7) expresses the continuity of the vertical velocity across the water-air 
surface. 

The continuity condition for the horizontal velocity follows from (2.10) taking into 
account the expressions (4.1) and (6.1) for the disturbances of the stream function in 
the air and in the water. At the first order in ka it is 

c,n = 4l,=o, 

X L O  = 4I,=o- (6.7) 

[U,(O,Z)n+x,(1 + " ) ] L O  = [(I -.)4e+~o,(O)nlI,=o. 

Taking into account (6.6) and the boundary condition (6.7) gives the secondary 
boundary condition for x: 

Xhlh=O = - (U,(O,Z) -Voo(O))  (1 -4 41y-o/c, + (1 - 2 4  4osly-o. (6.8) 

Besides the solution of (6.4) satisfying the boundary conditions (6.7), (6.8) should 
decrease with distance from the water surface. 

There are unknown functions 9' and 9- (normal and tangential stresses in the air on 
the water surface) in the dispersion equation (4.5). If the solution of (6.4)' with the 
boundary conditions (6.7) and (6.8) is known, then these functions can be found. Using 
(6.2~) to express the short-wave pressure component by X(h, 2)  and (2.1 1) and (2.12) 
to obtain the short-wave normal and tangential viscous stresses in the linear 
approximation for the short-wave disturbance yields the following expressions for 9 
and Y at the zeroth order of p :  

so all the terms in the dispersion equation for the short waves (4.5) are determined. 
Some solutions to this equation are discussed next. 

First, consider the solution of (4.5) when there is no viscosity (v, = 0), air (p,/p, = 0) 
and drift flow (uo = 0). Then taking into account (4.6) yields 

c, = co = {(y -a)+%)LJ1!l. L 
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K obviously depends on z': this dependence can be found by considering the ray 
equations for the short waves. Taking into consideration that D is conserved at the rays 
gives at the first order of approximation in ka. 

K = Ko(l +a). 

This expression is fully within the results of Longuet-Higgins & Stewartson (1960, 
1962) (see (1.3)). And in the reference frame moving with the water the short-wave 
frequency is 

which is within the results of Longuet-Higgins & Stewartson (1960, 1962) as well. 
Consider now under which conditions the drift flow in the water can be neglected. 

For that purpose one can make use of the results of calculations carried out by 
Valenzuela (1976), from which it follows that if the friction velocity of the wind is 
smaller than 30 cm s-l, then taking into consideration the wind drift flow in the water 
yields only a 10-15% increase in the growth rates of the waves with the wavelength 
greater than 3 cm. Taking this into account allows the drift flow in the water to be 
neglected, with an accuracy of not less than 10-15 %. 

In this case the solution of the Rayleigh equation (4.2) is 
IJI = A e@Kfl+U). 

And the dispersion relation ( 4 3 ,  in which function G is expressed using (6.9) and (6.10) 
for 9 and F, can be written as 

Boundary conditions (6.7), (6.8) are transformed in the following way: 

x(0) = X O ?  (6.1 2 a) 

(6.1 2 b) 

7. The modulation of the growth rate of the short waves in the presence of 
the long waves 

To calculate the modulation of the growth rate of the short waves in the presence of 
the long waves the dispersion relation (6.11) was considered. The function ~ ( h )  in (6.1 1) 
was determined by numerical calculation of (6.4a, b) with the boundary conditions 
(6.12) and the condition of decreasing at infinity. Also, (5.11 a, b) with the boundary 
conditions (5.3), (5.5) and the decreasing condition at infinity was solved numerically 
to find ~ l .  The stretched vertical coordinate y was used instead of h :  

y = log (h  + 10-4). 



Modulation of the growth rate of short surface capillary-gruvity waves 183 

0 2 4 6 8 lo 
A (cm) 

FIGURE 1. Comparison of wind-wave growth rates: -, calculations using the present model; ------, 
calculations from the Miles asymptotic theory (1962); ......, calculations by Valenzuela (1976). (a) 
u* = 10 cm s-l, (b)  u* = 20 cm s-l, (c) u* = 30 cm s-l. 

A finite-difference approximation, with a constant step in y ,  of the equations and 
corresponding boundary conditions leads to a system of linear algebraic equations with 
pentadiagonal band matrices. The Gauss elimination method modified for a band 
matrix was used for solving of the systems. Details of the algorithm can be found in 
Forsythe & Moler (1967). 

To verify the validity of the numerical algorithm the imaginary part of c, was 
calculated for the case when the air flow velocity was zero and the expression for c, 
could easily be found analytically. The error was less than 1 YO. 

To calculate the growth rate of the surface waves p the model logarithmic-linear 
wind velocity profile was used : 

h < 4/10 { k+-&a-tha). h > q/10, 
= Uo(h) = q 1 u,o 

1024, 

where sinh (a) = 0.8 (10h -q), and q is a constant defining the position of the viscous 
sublayer. As in Miles (1962) q = 8 was taken for atmospheric boundary-layer flow. 

To calculate the growth rate p, (6.11) has been solved by the iteration method. First, 
calculations of the growth rate of short wind waves without a long wave (a = 0) were 
carried out for a number of values of the wind friction velocity u* = 10, 20 and 30 cm 
s-I. They were compared with the Miles (1962) asymptotic theory and the calculations 
of Valenzuela (1976). The results are presented on figure 1. All the calculations are in 
good agreement for u* = 10 and 20 cm s-l. For u* = 30 cm s-l our calculations give 
values of the growth rate larger than obtained by Miles (1962) and Valenzuela (1976). 
This difference from the Miles calculations may be caused by the fact that his 
asymptotic theory is not valid to u, = 30 cm s-l and h > 3 cm, since the thickness of 



FIGURE 2. The mean growth rate of the short waves and its first harmonics (a)  and phase ( 6 )  versus 
the wavelength of the short wave A. The parameters of the long wave are: k = 0.1 m-l, ka = 0.04. The 
wind friction velocity u* = 10 cm ssl. (a) -, Po (the mean growth rate); ------, Pl (the amplitude of 
the first harmonic of the growth rate). (b)  -, $l (the phase of the first harmonic of the growth rate); 
____ , q5r (the phase of the wind velocity gradient near the water surface). 

0.4 
0 . 
d v 
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& 

FIGURE 3. As figure 2 but with u* = 20 cm s-l 

the viscous sublayer of the logarithmic boundary layer (qu,/v,) is equal to or less than 
the thickness of the viscous sublayer in the wave field (vz/(u: k))3/2 (see Valenzuela 
1976). 

The growth rate of a short wave on a long wave is generally the sum of the constant 
and periodically varying components, and P can be presented as 

For the linear regime of a long-wave disturbance in air only the first harmonic in 
(7.1) can be correctly considered, since the higher harmonics are of higher order in ka. 
For the nonlinear regime of a long wave in air the higher harmonics can be correctly 
taken into account. But, as follows from the numerical calculations, the amplitude of 
the first harmonic P1 is essentially larger than the higher ones in all the cases under 
consideration. The dependencies of Po, P1, $1 on the wavelength of the short wave h are 
presented on figures 2, 3 and 4 for the long-wave parameters k = 10-lm-' and 
ka = 0.04. The wind friction velocities are u* = 10,20 and 30 cm s-l on figures 2,3 and 
4 respectively. The relation of the oscillating component of the wind velocity gradient 

to the undisturbed gradient uo7 has been calculated for each case: 

For u* = 10 cm s-', M = 0.33 (figure 2), for u* = 20 cm s-l, M = 0.082 (figure 3) ,  for 
u* = 30 cm s-', M = 0.037 (figure 4). And when the value of M is of order of unity (the 
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FIGURE 4. As figure 2 but with u* = 30 cm ssl. 

nonlinear regime), then the amplitude of the oscillating part of the growth rate P1 is of 
order of the mean value p,, (see figure 2a). When M is much smaller than unity (the 
linear regime) then the amplitude of the oscillating part of the growth rate is much 
smaller, than the averaged one (see figures 3a,  4a). 

The phase of the oscillating part of the growth rate $1 is shown by the solid line on 
the figures 2(b), 3(b), 4(b). The dashed line shows the phase of the oscillating 
components of the wind velocity gradient near the water surface ($,-). appears to be 
close to $,-, which tends to -n with the growth of the wind velocity. 

8. Discussion: the effect of the modulation of the growth rate on the 
modulation of the short-wind-wave spectral components 

The effect of the modulation of the growth rate on the modulation of the spectral 
components of short wind waves is estimated in conclusion. To do that one must 
substitute the modulating growth rate into the equation for the short-wave spectrum 
on the long wave (the kinematical equation), calculate the modulation of the spectral 
components and compare this with the modulation caused only by the transformation 
of the short-wave spectrum on the variable flow of the long wave. Such a comparison 
was made, based on the model kinematical equation from Valenzuela & Wright (1979). 
When the velocity field of the long wave is 

u = akc cos kx 

and the growth rate of the short waves is modulated in the following way: 

p = Po +PI cos (kx- $1, 
the modulation of the short-wave spectrum was obtained by Valenzuela & Wright 
(1979) at the first order of approximation in ka and p, as 

I;= F,(1 +mcos(kx-$)), 

F, F, denoting modulated and undisturbed spectral densities of the short waves. The 
quantities m and $ are expressed the following way: 

where 
m = (a2 + b2)'" ; t) = arctan @/a),  
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FIGURE 6. As figure 5 but with u* = 20 cm s-l. 
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FIGURE 7. As figure 5 but with u* = 30 cm s-'. 

The variation of the absolute value of the modulation coefficient m and the phase $ 
of the short-wave spectral component h = 5 cm with the wavenumber k of the long 
wave with steepness ka = 0.1 are plotted on figures 5-7. One can see that the 
modulation of the growth rate of the short wave strongly influences the modulation 
coefficient of the wave spectrum. For constant steepness of the long wave the effect 
increases with the growth of the wavelength of the long wave. It is caused, first, by 
growth of the oscillating component of the air flow velocity gradient like k-lI4 and, 
second, by growth with the long-wave period of the short-long waves interaction time. 

The author would like to thank Professor L. A. Ostrovsky for stimulating 
discussions. 
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Appendix 
The addition to the phase velocity of the short wave caused by the induced flow in 

the boundary layer on the oscillating surface, which was calculated in Longuet-Higgins 
(1953), will be estimated here. As for (3.6) one can obviously obtain 

where 

(see Longuet-Higgins 1953). 
Integrating (A 1) gives 

The term vo(0) is the Doppler shift of the phase velocity, which is not present in the 
difference 2,-e (see (1.5)). The terms 2ck(ka)'/k, c,, < since w = ck < w, = c, k,. 

R E F E R E N C E S  
BENJAMIN, T. B. 1959 Shearing flow over a wave boundary. J.  Fluid Mech. 6, 513-532. 
FORSYTHE, G. E. & MOLER, C. B. 1967 Computer Solution of Linear Algebraic Systems. Prentice- 

Hall. 
LANDAHL, M. T., WIDNALL, S. E. & HULTGEN, L. 1978 An interactional mechanism between large 

and small scales for wind-generation water waves. In Proc. 12th Symp. on Naval Hydrodynamics, 
p. 541. National Academy of Sciences. 

LIGHTHILL, J. 1978 Waves in Fluids. Cambridge University Press. 
LONGUET-HIGGINS, M. S. 1953 Mass transport in water waves. Phil. Trans. R .  SOC. Lond. A 245, 

LONGUET-HIGGINS, M. S. 1963 The generation of capillary waves by steep gravity waves. J .  Fluid 
Mech. 16, 138-159. 

LONGUET-HIGGINS, M. S. 1987 The propagation of short surface waves on longer gravity waves. J.  
Fluid Mech. 177, 293-306. 

LONGUET-HIGGINS, M. S. & STEWART, R. W. 1960 Changes in the form of short gravity waves on 
long waves and tidal currents. J .  Fluid Mech. 8 ,  565-583. 

LONGUET-HIGGINS, M. S. & STEWART, R. W. 1961 The changes in the form of short gravity waves 
on steady, non-uniform currents. J.  Fluid Mech. 10, 529-549. 

MILES, J. W. 1962 On the generation of surface waves by shear flows. Part 4. J .  Fluid Mech. 13, 
433-448. 

PHILLIPS, 0. M. 1977 The Dynamics of the Upper Ocean. Cambridge University Press. 
PHILLIPS, 0. M. 1981 The dispersion of short wavelets in the presence of a dominant long wave. J .  

Fluid Mech. 107, 465435. 
RUVINSKY, K. D., FELDSTEIN, F. I. & FRIEDMAN, G. I .  1991 Numerical simulation of the quasi- 

stationary stage of ripple excitation by steep gravity-capillary waves. J.  Fluid Mech. 230, 
339-354. 

SCHLICHTING, H. 1955 Boundary layer theory. Pergamon. 
SHYU, J.-H. & PHILLIPS, 0. M. 1990 The blockage of gravity and capillary waves by longer waves 

VALENZUELA, G. R. 1976 Growth of gravity-capillary waves in a shear flow. J.  Fluid Mech. 76, 

VALENZUELA, G.  R. &WRIGHT, J. W. 1979 Modulation of short gravity-capillary waves by longer- 

535-58 1. 

and currents. J.  Fluid Mech. 217, 115-141. 

229-250, 

scale periodic flows. - A higher-order theory. Radio Sci. 14, 1099-1 110. 


